The Braid Index and the Growth of Vassiliev Invariants
نویسنده
چکیده
We use the new approach of braiding sequences to prove exponential upper bounds for the number of Vassiliev invariants on knots with bounded braid index, bounded bridge number and arborescent knots. We prove, that any Vassiliev invariant of degree k is determined by its values on knots with braid index at most k+1.
منابع مشابه
A Geometric Characterization of Vassiliev Invariants
It is a well-known paradigm to consider Vassiliev invariants as polynomials on the set of knots. We prove the following characterization: a rational knot invariant is a Vassiliev invariant of degree ≤ m if and only if it is a polynomial of degree ≤ m on every geometric sequence of knots. Here a sequence Kz with z ∈ Z is called geometric if the knots Kz coincide outside a ball B, inside of which...
متن کاملVassiliev and Quantum Invariants of Braids
We prove that braid invariants coming from quantum gl(N) separate braids, by recalling that these invariants (properly decomposed) are all Vassiliev invariants, showing that all Vassiliev invariants of braids arise in this way, and reproving that Vassiliev invariants separate braids. We discuss some corollaries of this result and of our method of proof.
متن کاملVassiliev Invariants and Knots modulo Pure Braid Subgroups
We show that two knots have matching Vassiliev invariants of order less than n if and only if they are equivalent modulo the nth group of the lower central series of some pure braid group, thus characterizing Vassiliev’s knot invariants in terms of the structure of the braid groups. We also prove some results about knots modulo the nth derived subgroups of the pure braid groups, and about knots...
متن کاملFree Groups and Finite Type Invariants of Pure Braids
In this paper finite type invariants (also known as Vassiliev invariants) of pure braids are considered from a group-theoretic point of view. New results include a construction of a universal invariant with integer coefficients based on the Magnus expansion of a free group and a calculation of numbers of independent invariants of each type for all pure braid groups.
متن کاملOn the Casson Knot Invariant
In our previous paper 19] we introduced a new type of combinatorial formulas for Vassiliev knot invariants and presented lots of formulas of this type. To the best of our knowledge, these formulas are by far the simplest and the most practical for computational purposes. Since then Goussarov has proved the main conjecture formulated in 19]: any Vassiliev knot invariant can be described by such ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999